
1

Supporting the Flexible Federate

Christopher L. Martinez

Sterling Software
JNTFRDC – CSF 270

730 Irwin Avenue
Schriever AFB, CO 80912-7300

719-567-8546
chris.martinez@jntf.osd.mil

Keywords:
HLA, FOM, Wargame 2000.

ABSTRACT: At the Joint National Test Facility, the Technology Insertion Studies and Analysis project
implemented a prototype federation to reduce risk for Wargame 2000, a new command and control simulation.
We found it difficult to flexibly specify and modify data interfaces among federates. An additional problem in
our prototype development was federate visualization - we found it very difficult to show the workings of the
federation. We recently worked with Wargame 2000 on a High Level Architecture gateway and were able to
successfully resolve these two issues. Building on the lessons learned from our proto- federations, we extended
our development tools by developing two innovative modules that use Thin Layer Data Interfacing.
FedConnector is a generic framework that allowed rapid federate development. FedConsole is a federate
viewer and control console. The two provide the developer access to federate data and federation components
for runtime viewing and modification. FedConnector allowed data primitives and structures to be defined
without recoding the simulation. Zero or more mappings were defined in the data and provided bi-directional
data conversion. Applications are developed using these mappings with and without a Run Time Infrastructure
connection and the development team has the choice between automatic FedConnector services or access the
native RTI API. Through multiple mappings FedConnector supports interoperability between the federate and
federation creating a flexible federate. FedConnector coupled with FedConsole facilitates federate/federation
test and evaluation using a common benchmark. The two were used in the development of the War Game 2000
gateway as deliverable software modules. This project substantially decreased technical risk to modeling and
simulation projects at the Joint National Test Facility that are required to be compliant with the High Level
Architecture mandate.

1. Introduction

Anyone who has been around the simulation
community in the past few years has also been
exposed to High Level Architecture (HLA). It has
become apparent that HLA has brought new challenges
that are currently being approached and solved in many
ways. More specifically there is the challenge of
Federation Object Model (FOM) dependence: when
there are any changes to a Simulation Object Model
(SOM) there will normally be a direct effect on the
simulations FOM which typically leads to recoding.
This paper describes the evolution of an HLA tool
called FedConnector that has provided FOM

independence for Wargame 2000 (WG2K) and
Missile Defense Space Tool (MDST).
2. Approach

FedConnector started out as a small library designed
to minimize the federate overhead involved in
creating, joining and resigning from an HLA
federation. The library succeeded in doing just that
and made it easy for a federate to start/join/resign. The
next logical step was to extend these services to some
smart data types. A smart-data base class was
developed and different data types could be created
base on this data type. This idea became the basis for
some of our early federates. The design suffered from

2

one major draw back: any changes in the FOM means
changes to data names and types in the federate code.

About this time, WG2K had developed requirements
for a configurable HLA Gateway. Since our work had a
head start interfacing with the RTI API provided by the
Defense Modeling and Simulation Offices, it was
chosen as a starting point.

The object data for the Gateway is configured via a
parameter file with HLA data via the SOM. The
challenge was to devise a system that would allow
changes to be made to either side. Our smart-data
types were limited primarily because they made
specific assumptions about data. We needed an
architecture that started with primitive data types and
allowed complex structures to be built from the
primitives. This approach presented it’s own
challenges, it had to support nested structures and be
fast. There was still one major obstacle to be
addressed: a means of bridging differences in data
names and types. These and other problems were
solved through the development of a Thin Layer Data
Interface (TLDI).

3. Thin Layer Data Interface

Figure 3.1 Thin Layer Data Interface De/Map

The bulk of the TLDI is pictured in Figure 3.1. It is
shown configured by a definition and mapping file.
Local and remote hosts operate sharing data that is
defined by the data definition. The local host has the
option of using the native format or one or more
alternate-mapping interface. In the case of multiple
mappings the TLDI notifies the local host of remote
data creation/updates by calling the first update
function registered.

The TLDI makes no assumptions about data and
emphasizes speed and flexibility.

The TLDI supports user:

• Data Definition
• Data Mapping
• Data Conversion
• Data Instantiation
• Data Deletion
• Data Publication/Subscription
• Local/Remote Host Interfaces
• Local/Remote New/Updating/Deletion
• Data Constructor/Destructor
• Data Definition Associated User data
• Data Warehousing
• Data Utilities
• Definition Parser

1. Data Definition - Data primitives are defined
using a name and a size. This scheme makes it
possible to create a primitive data type with any
name and size. Structures are defined based on
data primitives as well as other structures.
Structures can be nested to any level. These data
definitions came to be known as “native data”.

2. Data Mapping - Data mapping is accomplished by
creating an alternate interface into the native data
provided by the data definition. Multiple maps can
be defined creating a many-to-one map-to-
definition relationship. A map element can be
associated directly with a native data element or it
can reference an element of a nested structure.

3. Data Conversion - Data conversion is applied in a
number ways. Normally it is defined in a map
bridging a map element to a native element.
Occasionally it will be assigned to a data
primitive, as is the case with any sort of data
pointer. There is a number built-in conversion
functions that support most user requirements.

4. Data Instantiation - Based on the definition and
map information the TLDI can instantiate data
objects and provides all of the accessor and
mutator functions.

5. Data Deletion - Data deletion is also handled
based on the data definition. Since all data objects

Remote
Application

Local
Application

Data Definition
Data

Mapping/Translation

Thin Layer Data
Interface

Maps Defs

CData Configuration Files

CData Interface

3

are created dynamically, garbage collection is
very straightforward.

6. Data Publication/Subscription – Data can be
published and subscribed by type, map or element.

7. Local/Remote Host Interfaces - The TLDI
provides a local interface that is used by the
application and a remote interface that can be used
by a gateway, or as you will see, an HLA interface.
Both local and remote handles are maintained for
both definition and instantiated data.

8. Local/Remote New/Updating/Deletion -
Callbacks can be registered at the structure and
element level for object creation, updates and
deletion. This is the way the local application can
be notified of the creation, change and deletion of
a remote object.

9. Data Constructor/Destructor - Data constructors
and destructor functions can be registered at the
structure and element level to support specific
initialization and clean up operations.

10. Data Definition Associated User data - There are
two user definable integers and two void pointers
that can be associated with any structure or
structure element.

11. Data Warehousing - The onboard data warehouse
maintains references to data where it is stored
based on data type. Retrieval is based on the local
or remote handle.

12. Data Utilities - The TLDI has utilities to support:

• Documentation
• Configuration Explanation
• Definition Ambiguity

13. Definition Parser - Figure 3.2 shows the
definition/mapping file format accepted by the
TLDI built-in parser. The parser can be directed
by the application to load a configuration file or it
can be configured by setting the CDATA_DEF
environmental variable.

The TLDI parser supports the following
functionality (numbers are keyed to Figure 3.2):

1. Application Parameters
2. Logging Definition Processing

3. FedConsole Activation
4. Data Primitive Definitions
5. Conversion Function Assignments
6. Data Definitions
7. Map Definitions
8. Publish and Subscribe
9. User Data Assignment (integer)
10. Utility Execution

//**
// TestFed Definition File <FedConnecter>
//**

// Application Parameters
FederationName TestFederation
FederateName TestFed
FedFileName TestFed

// Open a file for outputing run
output: testFed.txt

// Turn FedConsole On
FedConsole On

// Data Prinitive Definitions
 int 4
 float 4
 double 8
 dataPtr 8 butoptr

// Assign Conversion Funcitons
 int float itof ftoi
 int double itod dtoi
 float double ftod dtof

Struct // Data Definitions
 position
 int x
 int y
 int z

 MunitionsEntiy
 int id
 position pos
 int state

Message
 int type
 int size
 bytePtr data

MapStruct // Map Definitions
 Missile MunitionsEntity
 float missileId id
 double mX pos.x
 double mY pos.y
 double mZ pos.z
 double health state

//Publish & Subscribe
Publish Missile
Subscribe Missile
Publish Message
Subscribe Message

// User Definition data Assignments
Function USER1 Missile.id 8192
Function USER2 Missile.mX 20
Function USER1 Missile.mY 55
Function USER1 Missile.mZ 89

// Run Utilities
Function buildDefs // Build all
Function dumpCStruct // Output Defs in C format
Function dumpFuncs // Output Conv. Func. List
Function dumpMaps // Dump all Def Maps
Function dumpConvAssign // Output Conv. Func. Assignments
Function checkNames // Check for errors in defs

//**
// End of testFed Definition File <FedConnector>

2

3

9

5

6

7

10

8

4

1

4

Figure 3.2 TLDI
Definition/Mapping/Configuration

3.1 Using the TLDI

The are two C++ classes associated with the TLDI
CDTypes and CData. CDTypes maintains all definition
and configuration, while CData represents all instance
data. A CDTypes class is instantiated and the
developer loads configuration data either from a
definition file using the built in parser, from the
application, or a combination of the two. Update and
delete functions are registered and the TLDI is ready
for use by the local host. Data is instantiated by the
CDTypes class in the form of CData objects. Accessor
and mutator functions are available for all elements as
well as several copy and assignment
functions/operators.

The CDTypes object is now ready to be passed to a
remote host for connection and configuration.

4. FedConnector

The target for the TLDI remote host was an HLA
interface. This meant reusing the original small library
and adapting it for use as a remote host. This library
became the basis for FedConnector. FedConnector,
reads the federation .fed file and combines the
configuration information of the TLDI with the FOM
reporting any errors found. All new/update/delete
functions are registered with the TLDI to automate the
processing of all-local objects and interactions.
FedConnector then joins the federation and processes
all publishing and subscription requirements.

Figure4.1 Federate using FedConnector

Figure 4.1 shows a typical FedConnector based
federate. Definition and map information are parsed by
the TLDI. FedConnector parses and correlates FOM
information.

FedConnector uses a single C++ class that contains
the complete functionality of a remote HLA host as
shown in Figure 4.1.

Figure 4.2 FedConnector as a Remote Host

5. FedConsole

A problem encountered during federate development
was the lack of visibility. Out of this necessity came
FedConsole. FedConsole is a Java application that
provides a federation view from the federate
perspective as shown in Figure 4.2.

The main screen is shown in Figure 5.1. There is a
section for object, federation and interaction
information. A current status section and a notes
section provide the state of the federation and RTI.

The developer takes advantage of the
Start/Stop/Pause/Reset buttons and well as 5 different
sync/event buttons for federate control. Time
management controls are available providing the 4
modes of time management. The developer passes

Simulation

HLA/RTI

FedConnector

.fed

TLDI

.def

.map

FedConnector
Engine

HLA
Application

Data Definition
Data

Mapping/Translation

Thin Layer Data
Interface

Maps Defs

CData Configuration Files

FedConnector
CData Interface

.fed File

HLA/RTI

FedConsole

5

application information to the info, notes and status
areas.

An object/interaction viewer is started from the main
console. This allows objects/interactions listings,
instance listings and object/interaction instance data.

Figure 5.1 FedConsole main screen

FedConsole attaches to FedConnector from anywhere
on the network. Because it is written in Java, it can run
on virtually any host.

6. Putting it all Together

The driving force behind the development of
FedConnector and FedConsole was the HLA Gateway
project for Wargame 2000 as shown in Figure 6.1. The
federate can adapt to changes to the .par or .fed file

with simple modifications to the definitions and maps.

Figure 6.1 The TLDI with local host WG2K

6.1 An Example

A simple federate was constructed using the definition
file shown in Figure 3.2 and the source listing shown
in Figure 6.2 and 6.3. This federate consisted of one
HLA object and one interaction and can federate with
another instance of itself while being controlled by
FedConsole. The missile object used in this example
is a mapping of the MunitionsEntity HLA object. The
FedConsole “Start”, “Stop” and “Quit” buttons start,
stop and quit the main loop. Pressing the Event1
button sent a message and an Event2 creates a missile.
All message and missile values are randomly
generated. When a missile or message is received it is
printed out by the registered update callback function.
This code example shown contains a complete test
federate.

FedConnector
Engine

WG2K

Data Definition
Data

Mapping/Translation

Thin Layer Data
Interface

Maps Defs

WG2K
FedConnector

.fed File

HLA/RTI

FedConsole

SPEEDES
.par File

001 //**
002 // TestFed Example - Listing one
003 //**
004
005 #include “CDTypes.H> // TLDI
006 #include “FedConnector.H” // FedConnector
007
008 int run = 0, quit = 0, event1 = 0, event2 = 0; // globals for FedConsole
Cntrl 009
010 int startFed (char *s, int cmd, int chan) {run = 1;} // FedConsole
011 int stopFed (char *s, int cmd, int chan) {run = 0;} // Callback
012 int resetFed (char *s, int cmd, int chan) {quit = 1;} // Functions
013 int event1Fed (char *s, int cmd, int chan) {event1++;} // for Federate
014 int event2Fed (char *s, int cmd, int chan) {event2++} // Control
015
016 int receiveMessage(int type, CData* d, int cnt) {// Message Update
017 int type, size; // local Varibles
018 CByte *dataPtr;
019 d->get(“type”, &type); // Message.type
accessor
020 d->get(“size”, &size); // Message.size
accessor
021 d->get(“data”, (CByte *) &dataPtr); // Message.data
accessor
022 cout << “*** Message Data Dump ******** “<< endl; // Print out the
023 cout << “Type:” << type << “ Size: “ << size<< endl; // Message
data
024 cdata::bufferDump(dataPtr, size); // Dump Utility
025 cout << “*****************************” << endl;
026 return(CData::DeleteInteraction); // Delete interaction instance
027 }
028
029 int receiveMissile(int type, CData* d, int cnt) { // Missile Update
Function
030 float id; // local varibles
031 double mX, mY, mZ;
032 d->get(“missileId”, &id); // Obtain Missile ID
033 d->get(“mX”, &mX); // Obtain X
034 d->get(“mY”, &mY); // Obtain Y
035 d->get(“mZ”, &mZ); // Obtain Z
036 cout << “*** Missile Data Dump ******** “<< endl; // Print out the
037 cout << “ID:” << id << “ X: “ << mX << “ Y: “ // Missile
Data
038 << mY << “ mZ:” << mZ << endl;
039 cout << “*****************************” << endl;
040 return(Cdata::InsertInWareHouse); // Insert Object
041 }
042
043 int deleteMissile(int type, CData *d, int count) { // Missile Delete function
044 int id;
045 d->get(“missileId”, &id); // Obtain the id

6

Figure 6.2 Example Source Listing 1

The important points from listing 1:

• Lines 5-6 contain the two include files required in
the federate source.

• Lines 10-14 provide the callback functions that
can be tied to FedConsole button.

• Lines16-27 are the callback function for a
message interaction. All we do here is use the
built-in accessor functions to print out the
message data.

• Lines 29-42 contain the new/update callback
function for a missile. Again, using the accessor
function the missile data is printed out.

• Lines 44-48 contain the delete callback for a
missile object.

Figure 6.2 Example Source Listing 2

The important points from listing 2:

• Line 57 declares the TLDI CDTypes instance.
• Line 58 loads the definition file. An

environmental variable can be used to automate
this process supporting multiple configurations.

• Lines 59-61 register the update and delete
functions.

• Lines 62-63 query the TLDI for the message and
missile handles.

• Line 64 declares the FedConnector instance
passing the address of the TLDI. The constructor
for FedConnector opens the .fed file and
correlates it to the TLDI definitions and maps
then join the federation.

• Lines 65-69 register the control functions from
listing one with FedConnector for use with
FedConsole.

• Line 70 sends a string to the FedConsole notes
sections.

• Lines 70-101 show the federate main loop.
• Line 72 Ticks the RTI.
• Lines 73-99 provide a run loop that is controlled

by the FedConsole “Start” and “Stop” buttons.
• Lines 74-84 send a Message interaction when the

“Event1” button is pressed on FedConsole.
• Lines 75-78 create the random message data.
• Line 79 creates the message interaction

CData instance.
• Line 80-82 loads the random message data

into the message.
• Line 83 updates the message reflecting the

new values.
• Lines 86-96 create Missile Object when the

“Event2” is pressed on FedConsole.
• Lines 87-89 create the random Missile data.
• Line 90 creates the Missile CData Object.
• Lines 91-94 load the random missile data.
• Line 95 updates the missile class reflecting

the new values to the RTI.
• Line 101 deletes the FedConnector instance

calling the destructor for the fedConnector

051 //**
052 // TestFed Example - Listing two
053 //**
054
055 int main(void) {
056 int lEvent1 = 0, lEvent2=0; // Local event values
057 CDTypes dts(“TestFed”); // CDTypes Object (TLDI)
058 dts.load(“TestFed.Def”); // Load Def’s & Maps
059 dts.setUpdate(“Missile”, receiveMissile); // Register Missile Update
060 dts.setDelete(“Missile”, deleteMissile); // Register Missile Delete
061 dts.setUpdate(“Message”, receiveMessage); // Register Message Update
062 int missile = dts.find(“Missile”); // Obtain Missile Handle
063 int message = dts.find(“Message”); // Obtain Message Handle
064 FedConnector *f = new FedConnector(“TestFed”, &dts); // New FedConnector
065 f->setStartCB(startFed); // Register the FedConsole Start
Callback
066 f->setStopCB(stopFed); // Register the FedConsole Stop
Callback
067 f->setResetCB(haltFed); // Register the FedConsole Halt
Callback
068 f->setEvent1CB(Event1Fed); // Register the FedConsole Event 1
Callback
069 f->setEvent2CB(Event2Fed); // Register the FedConsole Event 2
Callback
070 f->notes(“Test Federate Starting”); // Write string to FedConsole notes area
071 while(!halt) { // Run till halted
072 f->tickRTI(0.2, 0.5); // Tick the RTI
073 if(run) { // If the federate is
Running
074 if(event1>lEvent1) { // Create/Send Message
075 int type = rand()%128; // Load type with random
value
076 int size = rand()%256; // Load size with random
value
077 CByte *cPtr = new CByte[size]; // Create a random size data
buffer
078 For(int iSize=0;iSize<size;iSize++) cPtr[iSize]=rand()255; // Load buffer
079 CData * mes = dts(message); // Create a message instance
080 mes->set(“type”, type); // Set Message.type
081 mes->set(“size”, size); // Set Message.size
082 mes->set(“data”, cPtr,size); // Set Message.data
083 mes->update(); // Update message interaction
084 lEvent1 = event1; // advance local event 1 to
FedConsole
085 } // End of Event 1 – Create/Send
Message
086 if(event2>lEvent2) { // Create/Send Missile
087 double x = rand()%360; // Load x with random value
088 double y = rand()%360; // Load y with random value
089 double z = rand()%360; // Load z with random value
090 Cdata *mis = dts(missile); // Create the missle object
091 mis->set(“id”, rand()%256); // Set Missile.id with random value
092 mis->set(“mX”, x); // Set Missile.mX
093 mis->set(“mY”, y);); // Set Missile.mY
094 mis->set(“mZ”, z);); // Set Missile.mZ
095 mis->update(); // Update Missile Interaction

7

object. This will resign the Federate from the
federation and cleanup all data.

This test federate example touches on some of the
main features of FedConnector and FedConsole. This
example allows a federate to connect to a federation,
publish and subscribe to one interaction and one
mapped object. Control of the example is managed via
FedConsole.

7. Conclusion

FedConnector and FedConsole will continue to evolve
in support of WG2K and MDST. This evolution will
remain generic and general purpose to support rapid
HLA federate development.

8. References

[1] Mitch Peckham: “High Level Architecture
Gateway for Wargame 2000”, Simulation
Interoperability Workshop 99F_SIW_140.

Author Biographies

CHRISTOPHER L. MARTINEZ is a Senior
Software Engineer at the Joint National Test Facility,
Schreiver AFB, CO. He is a member of the
Technology Insertion Studies and Analysis (TISA)
group where he has been supporting the War Game
2000 HLA efforts.

